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Abstract—This paper deals with modeling, analysis, and opti-
mization of power amplifiers (PAs) placed in a cascaded structure,
particularly the effect of cascaded nonlinearities is studied by
showing potential ways to minimize the total nonlinearities. The
nonlinear least-squares algorithm is proposed to optimize the
PA parameters along with the input power level, and thereby
minimize the total nonlinearities in the cascaded structure. The
simulation results demonstrate that the performance of the
optimized configurations for up to five PAs using the proposed
framework can improve the linearity properties of the overall
cascade.

Index Terms—Power amplifier nonlinearity, cascaded struc-
ture, minimization of total nonlinearities, nonlinear least-squares

I. INTRODUCTION

Radio frequency power amplifiers (PAs) are essential ele-
ments in wireless communication systems, but they are also
one of the main sources of nonlinearities that distort the
transmitted signal and degrade the overall system performance.
This is especially severe in systems operating on signals
with high peak-to-average power ratio (PAPR). In order to
design high-performance wireless transmitters, the behavioral
modelling of PAs has received considerable attention over the
last few decades, as it is an essential step in understanding PAs
limitations and developing efficient digital signal processing
algorithms for optimizing their performance [1]–[4].

Recent advances in wireless communication systems have
shown the need for considering a cascade of PAs, where each
of them amplifies the incoming signal to compensate for the
losses incurred in the preceding fiber [5]. A similar problem
has been considered in optical free-space communications
[6] and optical communications [7] to overcome the impact
of the attenuation for long distances. Additionally, cascaded
structures of PAs have been proposed to improve power
efficiency and minimize chip size [8], [9]. However, the effect
of cascaded nonlinearities has not been fully studied in these
areas, moreover, many papers assumed that the nonlinear effect
is negligible.

Further, requirements on implementation complexity and
power consumption are growing with the evolution of com-
munication systems. It is usually desirable that a PA op-
erates near saturation region in order to achieve maximum

power efficiency, which is especially important in ultra-high-
frequency communication systems. There has been a large
amount of literature on modeling a single PA and various
techniques on linearization, including digital pre-distortion at
the transmitter [10], [11] and digital post-distortion at the
receiver [12], proposed to achieve a balance between linearity,
adequate amplification, and implementation complexity. How-
ever, in the case of cascaded PAs, the distortions from each
amplifier accumulate with those from the preceding stages,
leading to severe nonlinear behavior. Moreover, since the PA
nonlinearity strongly depends on the input power, the behavior
of each PA in the cascade is influenced by the output of the
preceding PA. This highlights an important research direction
for investigating the behavior of cascaded PAs and discovering
potential ways to minimize the effect of the cascaded structure.

In this paper, we address this issue by modeling the
cascaded PAs, providing a thorough analysis of total non-
linearities, and optimizing the parameters of the cascade to
mitigate the severe effect of the cascaded amplifiers. The main
contributions of the paper are as follows.

• An analysis of the nonlinearities in the cascaded PAs
structure is presented, showing potential ways of mini-
mizing the effect of cascading.

• A nonlinear least-squares (NLS) optimization problem is
formulated and solved to minimize the total nonlinearities
in the cascaded structure by optimizing the PA gain values
and input power.

• Numerical results demonstrating the performance of the
optimized configurations using the proposed framework
are presented for up to five PAs in cascade.

Following the introduction, Section II introduces the model
of the cascaded PAs. In Section III, an analysis of nonlin-
earities in the cascaded structure is given and the ways of
minimizing them are highlighted. The optimization problem
to minimize the total nonlinearities is presented in Section IV,
following simulation results provided in Section V. Finally,
Section VI concludes the paper.

II. SYSTEM MODEL

Due to inherent nonlinear behavior of PAs in practice,
they introduce nonlinear distortion to the incoming signal
with the increase of power. To analyse the effect of total
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Fig. 1. Model of the cascaded PAs.

nonlinearities in the cascaded structure, where the distortions
are accumulated with the increase in the number of amplifiers,
the cascaded PAs can be modeled as a cascade of nonlinear
functions indicating the PA behavior and noise sources repre-
senting thermal noise, as it is shown in Fig. 1.

We assume that the complex baseband equivalent of the in-
put signal to the first PA in the cascade is denoted by x

(0)
n , with

power of p0. PA behavior under normal operation conditions,
in the simplest case, can be modeled using the third-order
memoryless polynomial model [3]. Thus, the output signal
y
(k)
n of the kth PA can be described as

y(k)n = g(k)f
(
x(k)
n

)
= g(k)

(
x(k)
n + α(k)x(k)

n |x(k)
n |2

)
, (1)

where x
(k)
n is the input signal to the kth PA, α(k) is the third-

order nonlinearity coefficient, which is typically complex-
valued to capture both amplitude-to-amplitude modulation
(AM/AM) and amplitude-to-phase modulation (AM/PM).
Since third-order nonlinearities are generally dominant com-
pared to higher-order terms in the context of a single PA [3],
the model in (1) captures the majority of nonlinear distortions
and can be used for further analysis of a cascade of PAs.
Additionally, in this paper, we assume that the amplifiers are
placed in cascade to compensate for the losses incurred in
the connectors between them. Therefore, the coefficient g(k)

represents both linear amplification of the PA and attenuation
due to losses in the connector. In the case when linear ampli-
fication exactly equals attenuation, g(k) = 1. Furthermore, the
thermal noise between the PAs is modeled as additive white
Gaussian noise (AWGN) with the variance σ2.

To express the output of the (k + 1)th PA, a function in-
corporating a single stage, represented by the PA nonlinearity
and thermal noise, is defined as

F (y(k)n , g(k+1)) = g(k+1)f
(
y(k)n + σw(k+1)

n

)
. (2)

Then, for the signal x(0)
n passing through K cascaded PAs,

the output y
(K)
n can be expressed by applying the function

F (·) in (2) iteratively K times, i.e.,

y(K)
n = F (F (. . . F (x(0)

n , g(1)), g(2)) . . . )︸ ︷︷ ︸
K times

. (3)

III. ANALYSIS OF NONLINEARITIES IN THE CASCADED
STRUCTURE

In this section, we focus on the analysis of nonlinearities
accumulating in the cascaded structure to show potential ways

for minimizing the total distortions by optimizing parameters
of the cascaded structure, as will be presented in Section IV.

A. Cascaded Nonlinearities in the Noise-Free Case

In the noise-free case (σ = 0), the output of the second PA
can be written in terms of x(0)

n using (3) as

y(2)n =g(2)
[
g(1)

(
x(0)
n + α(1)x(0)

n |x(0)
n |2

)
+ α(2)

(
g(1)

)3(
x(0)
n + α(1)x(0)

n |x(0)
n |2

)
×

∣∣x(0)
n + α(1)x(0)

n |x(0)
n |2

∣∣2]. (4)

Assuming that α(k), k = 1, . . . ,K, are small values, we
can approximate the quadratic terms α(k)α(l) for k, l =
1, 2, . . . ,K as being negligibly small. Consequently, the terms
in (4) containing these coefficients can be omitted from this
analysis. Then, y(2)n in (4) can be approximated by ỹ

(2)
n given

by

ỹ(2)n = g(2)g(1)
[
x(0)
n +

(
α(1) + α(2)

(
g(1)

)2)
x(0)
n |x(0)

n |2
]
.

(5)

Applying the same calculations and utilizing the assumption
α(k)α(l) ≈ 0 for k, l = 1, 2, . . . ,K, the output of the third PA
can be expressed as

ỹ(3)n =g(3)g(2)g(1)
[
x(0)
n +

(
α(1) + α(2)

(
g(1)

)2
+ α(3)

(
g(2)g(1)

)2)
x(0)
n |x(0)

n |2
]
. (6)

Following the same procedure, the Kth PA output can be
approximated by

ỹ(K)
n = g̃(g,K)

[
x(0)
n + α̃(g,α,K)x(0)

n |x(0)
n |2

]
, (7)

where g̃(g,K) and α̃(g,α,K) can be seen as the gain and
third-order nonlinearity coefficient of an equivalent PA, given
respectively by

g̃(g,K) =

K∏
k=1

g(k), (8)

α̃(g,α,K) = α(1) +

K∑
k=2

α(k)
k−1∏
q=1

(
g(q)

)2
, (9)

with g = [g(1), g(2), . . . , g(K)] and α = [α(1), α(2), . . . , α(K)].



B. Cascaded Nonlinearities in the Presence of Noise

In the presence of noise with variance σ2, the input to the
kth PA, k = 1, 2, . . . ,K, contains the additional component
σw

(k)
n . Then, following the same analysis as in Section III-A

and assuming that σ is also a small value, the quadratic
terms α(k)α(l), α(k)σ, σ2, for k, l = 1, 2, . . . ,K, can be
approximated as being negligibly small. Then, the output of
the Kth PA can be approximated by

ỹ(K)
n =g̃(g,K)

[
x(0)
n + α̃(g,α,K)x(0)

n |x(0)
n |2

]
+ σ̃(g,K)wn, (10)

where σ̃(g,a,K) is the standard deviation of an equivalent
AWGN noise after the Kth PA given by

σ̃(g,K) = σ

√√√√ K∑
k=1

K∏
q=k

(g(q))2. (11)

C. Analysis of the Approximating Expressions

From equations (7)–(11), it can be observed that the amount
of distortions at the output of the cascade of K PAs strongly
depend on their parameters g(k) and α(k), k = 1, . . . ,K, and
the values of the input signal x(0)

n to the first stage, i.e., the
power p0. Specifically, a linear combination of α(k) in (9)
relies on the product of quadratic terms (g(k))2, and noise
level in (11) is influenced by the product of the linear terms
g(k). The coefficient α(k) represents the inherent nonlinear
distortion characteristics of the kth amplifier, that is generally
difficult to change without redesigning the amplifier. In con-
trast, the input power p0 and linear gain g(k) can be more
easily adjusted in practice. In this paper, we consider that the
PAs in cascade have the same nonlinear characteristics, i.e.,
α(k) = α. Thus, varying the parameters p0 and g(k) can lead
to minimizing the total nonlinearities at the output of the Kth
PA.

One of the challenges lies in finding a compromise between
maintaining the desired linear gain at the output of the Kth
PA and minimizing the overall distortions because reducing the
gain g(k) in (9) can also decrease the total linear amplification
term in (8) and can affect the noise component in (11).

It is important to emphasize that equations (7)–(11) were
derived to provide insights into the total nonlinearities and
to highlight the need for optimizing the parameters of the
cascaded structure in order to minimize the overall distortions.
Further, the cascaded function in (3) will be utilized in the
optimization problem presented in the next section.

IV. OPTIMIZATION PROBLEM

A. Problem Formulation

To tackle the problem of minimizing the total nonlinearities
in the cascaded PAs structure, an NLS algorithm is employed
in this paper.

The problem is to minimize the total nonlinearities by
optimizing the PA gains g(k) and input power p0, i.e.,

min
p0,g

∥Gx(0)
n /

√
p0 − y(K)

n ∥2 (12)

subject to 0 < p0 ≤ 1,

(1− ε)G ≤ g(k) ≤ (1 + ε)G, k = 1, 2, . . . ,K,
(13)

where G is the reference gain (desired) at the output of the
Kth PA, y(K)

n as in (3), and ε is the parameter determining the
allowable range for the PA gains g(k). Here, we consider two
following sub-cases, that add additional constraints to (13):

(a) Equal PA gains, i.e., g(k) = g and g = [g, g, . . . , g].
Then, the optimization parameters are p0 and g in (12).

(b) Unequal PA gains, i.e., the optimization parameters are
p0 and g = [g(1), g(2), . . . , g(K)] in (12).

Note that the normalization by 1/
√
p0 in (12) eliminates the

dependence of the desired signal on the input power p0.

B. Performance Metrics

The performance of the cascaded PA models with optimized
parameters is evaluated in terms of normalized mean square
error (NMSE) and adjacent channel leakage ratio (ACLR). The
NMSE is defined as

NMSE =

∑N
n=0 |yn − y

(K)
n |2∑N

n=0 |yn|2
, (14)

where yn = Gx
(0)
n /

√
p0 is the desired output and y

(K)
n is the

output of the Kth PA in (3).
The ACLR is defined as

ACLR =

∫
max. adj.

∣∣Y (K)(f)
∣∣2∫

ch.

∣∣Y (K)(f)
∣∣2 , (15)

where Y (K)(f) is the power spectrum of the signal y(K)
n . Here,

the integration in the nominator is performed over the adjacent
channel with the highest power, while the denominator’s
integration is carried out over the main channel.

V. SIMULATION RESULTS

A. The Choice of the Starting Point for the Optimization

Since the optimization problem in (12) is nonlinear, a rea-
sonable starting point is needed to prevent the convergence to
a poor local optimum. Thus, we consider two initial scenarios:

(1) The linear gain of every PA corresponds to the losses
that occurred in the connector, i.e., g(k) = 1, k =
1, 2, . . . ,K.

(2) Every PA operates in the most efficient regime, i.e., with
the maximum input power, and in this case, g(k) = g =
xmax/f(xmax) representing amplification to achieve the
maximum input level of one, with xmax =

√
1/(3|α|).

A cascade of K = 1, . . . , 5 PA(s) is considered for both
scenarios, with α = −0.33(1− 0.1j), p0 = 1 and σ2 = 10−5.
The input signal x(0)

n is a normalized 16QAM complex base-
band signal. The desired linear gain G is set to one. The



Fig. 2. AM/AM of the cascaded PAs for the two initial scenarios.

Fig. 3. PSD of the cascaded PAs for the two initial scenarios.

AM/AM characteristics and the power spectral density (PSD)
of the Kth PA output signals for the two initial scenarios are
shown in Figs. 2 and 3, respectively. Clearly, as K increases,
the level of distortion rises. In Scenario 1, the output signal
of each successive PA accumulates nonlinear distortions and
experiences saturation, resulting in a progressive loss of the
initial amplitude as the number of cascaded PAs increases. In
Scenario 2, the output signal becomes increasingly susceptible
to nonlinear distortions due to enhanced nonlinear effects,
while its amplitude remains approximately unchanged. The
results in terms of NMSE and ACLR are shown in Fig. 4,
where it seen that the first scenario shows better performance,
and thus can serve as the initial starting point for further
optimization. Moreover, these two scenarios can serve as the
upper and lower bounds for choosing a starting point to solve
the nonlinear optimization problem in (12).

B. Optimization of the Parameters in the Cascaded Structures

1) Input Power Optimization: First, to investigate how the
input power p0 influences the performance, the problem in
(12) is considered by optimizing a single coefficient p0, given
fixed PA gain coefficients g. The values of the optimized input
signal power are listed in Table I, and the performance of
the optimized configurations are shown in Fig. 4. It is seen

TABLE I
INPUT SIGNAL POWER AFTER OPTIMIZATION.

K PAs in a cascade
Case 1 2 3 4 5

Input power opt. (Scenario 1) 1 1 1 1 1
Input power opt. (Scenario 2) 0.49 0.23 0.11 0.05 0.02
Input power and equal PA
gains optimization

0.65 0.40 0.25 0.19 0.19

Input power and unequal PA
gains optimization

0.65 0.40 0.27 0.30 0.32

TABLE II
PA GAIN VALUES AFTER OPTIMIZATION.

K PAs in a cascade
Case k 1 2 3 4 5

Equal PA gains optimization

1 1.07 1.07 1.07 1.06 1.06
2 - 1.07 1.07 1.06 1.06
3 - - 1.07 1.06 1.06
4 - - - 1.06 1.06
5 - - - - 1.06

Unequal PA gains
optimization

1 1.07 0.86 0.70 0.70 0.70
2 - 1.30 1.26 0.99 0.82
3 - - 1.30 1.30 1.21
4 - - - 1.30 1.30
5 - - - - 1.30

Input power and equal PA
gains optimization

1 1.30 1.30 1.30 1.26 1.21
2 - 1.30 1.30 1.26 1.21
3 - - 1.30 1.26 1.21
4 - - - 1.26 1.21
5 - - - - 1.21

Input power and unequal PA
gains optimization

1 1.30 1.30 1.24 1.02 1.02
2 - 1.30 1.30 1.17 1.03
3 - - 1.30 1.30 1.13
4 - - - 1.30 1.29
5 - - - - 1.30

that p0 = 1 is the optimal value for Scenario 1, while it is
not for Scenario 2 where the performance has improved after
optimization, and even outperforms Scenario 1. However, as
the number of PAs in the cascade increases, the input power
in Scenario 2 decreases significantly, potentially leading to a
reduced SNR in the initial stages due to the constant thermal
noise power.

2) PA Gains Optimization: Further, to investigate how the
PA gains can be optimized given maximum input power p0 =
1, the problem in (12) is considered with equal gains, i.e., by
optimizing a single coefficient g, and with unequal gains, i.e.,
by optimizing coefficients g(1), g(2), . . . , g(K). Scenario 1 is
chosen as the initial starting point, and the parameter ε = 0.3
is set here. The results shown in Fig. 4 indicate that the case
with unequal gains exhibits better performance. Notably, the
difference between the two cases becomes more pronounced
as the number of PAs in the cascade increases. The values of
the optimized PA gain values are listed in Table II.

3) Joint Input Power and PA Gains Optimization: Finally,
joint optimization of the PA gains and input power is con-
sidered here. Scenario 1 as the starting point and ε = 0.3
are also chosen here. The results of the optimization are
shown in Figs. 4–6, and the optimized values of the input
signal power and PA gains are listed in Tables I and II,



Fig. 4. Results of the optimization of the cascaded PAs parameters in
terms of NMSE and ACLR.

Fig. 5. AM/AM of the output after K PAs with the optimized input power
and PA gains (equal and unequal gains).

Fig. 6. PSD of the output after K PAs with the optimized input power
and PA gains (equal and unequal gains).

respectively. One can observe that incorporating the input
power level into the optimization, along with the gains, further
enhances the potential for reducing overall distortions and
mitigating the severe effects of cascading K PAs, however,
the difference between equal and unequal gains is small and
becomes noticeable only for K ≥ 4.

VI. CONCLUSIONS

This paper studied modeling of cascaded PAs and provided
an analysis of the total nonlinearities, which accumulate as the
number of PAs increases. The NLS algorithm was proposed to
optimize PA gains and input power levels, thereby minimizing
the overall impact of cascaded nonlinearities. Simulation re-
sults demonstrated the performance improvement of cascaded
structures optimized using the proposed framework.

The analysis presented in this paper can provide opportuni-
ties to develop efficient linearization techniques while achiev-
ing an optimal balance between minimizing overall distortions,
enhancing system performance, and reducing implementation
complexity. In future work, higher-order polynomials can be
utilized to model cascaded PAs more accurately, and digital
predistortion techniques can be investigated to enhance the
performance of cascaded PA structures.

VII. ACKNOWLEDGMENT

This work was supported by the 6GTandem project funded
by the European Union’s Horizon Europe research and inno-
vation programme under Grant Agreement No 101096302.

REFERENCES

[1] O. Hammi, S. Carichner, B. Vassilakis, and F. M. Ghannouchi, “Power
amplifiers’ model assessment and memory effects intensity quantifi-
cation using memoryless post-compensation technique,” IEEE Trans.
Microw. Theory Techn., vol. 56, no. 12, pp. 3170–3179, 2008.

[2] Y. Khawam, O. Hammi, L. Albasha, and H. Mir, “Behavioral modeling
of GaN Doherty power amplifiers using memoryless polar domain
functions and deep neural networks,” IEEE Access, vol. 8, pp. 202 707–
202 715, 2020.

[3] M. H. Moghaddam, S. R. Aghdam, N. Mazzali, and T. Eriksson,
“Statistical modeling and analysis of power amplifier nonlinearities in
communication systems,” IEEE Trans. Commun., vol. 70, no. 2, pp.
822–835, 2022.

[4] J. He, S. Huang, Y. Huang, S. Chang, S. Ying, B.-Z. Shen, and Z. Feng,
“A unified power amplifier representation-based receiver equalization
technique for nonlinear OFDM signal detection,” IEEE Trans. Commun.,
vol. 72, no. 4, pp. 2260–2274, 2024.

[5] D. Kong, D. P. Moya Osorio, and E. G. Larsson, “Propagation distance
estimation for radio over fiber with cascaded structure,” in IEEE 25th
Int. Workshop Signal Process. Advances Wireless Commun. (SPAWC),
2024, pp. 691–695.

[6] Y.-S. Hurh, K.-W. Shin, S.-H. Lee, and J.-S. Lee, “Weather-insensitive
optical free-space communication using gain-saturated optical fiber
amplifiers,” J. Lightwave Technol., vol. 23, no. 12, pp. 4022–4025, 2005.

[7] S. Wannenmacher and G. Bauer, “Optimum configuration for cascaded
fiber amplifiers in attenuation limited transmission systems,” J. Light-
wave Technol., vol. 16, no. 4, pp. 509–514, 1998.

[8] O. Hammi, S. Boumaiza, J. Kim, S. Hong, I. Kim, B. Kim, and
F. Ghannouchi, “RF power amplifiers for emerging wireless commu-
nications: Single branch vs. multi-branch architectures,” in Canadian
Conf. Electric. Comput. Eng., 2006, pp. 598–601.

[9] P. N. Landin and U. Gustavsson, “Distortion mitigation in RF trans-
mitters with cascaded nonlinear and efficient power amplifiers,” in
WAMICON 2014, 2014, pp. 1–4.

[10] P. Aggarwal and V. A. Bohara, “End-to-end theoretical evaluation of a
nonlinear MIMO-OFDM system in the presence of digital predistorter,”
IEEE Syst. J., vol. 13, no. 3, pp. 2309–2319, 2019.

[11] Y. Yu, L. Yu, R. Liu, X.-W. Zhu, P. Chen, and C. Yu, “Digital
predistortion of millimeter-wave GaN power amplifiers for 6G integrated
communication, sensing, and power transfer scenarios,” IEEE Trans.
Microw. Theory Techn., vol. 73, no. 1, pp. 26–37, 2025.

[12] Z. Alina and O. Amrani, “On digital post-distortion techniques,” IEEE
Trans. Signal Process., vol. 64, no. 3, pp. 603–614, 2016.


